“Why does every country have different plug sockets?” asks Harry (10)

Thanks team. The third socket, the Earth socket is sometimes called the ‘grounding socket”. Lets try to make our own circuit to find out a little bit about this.

You would need a battery, some wire, a light bulb in a bulb holder and let’s say a cup with some damp sand in it.


Push the earth wire into the wet sand and see what happens.

The Earth socket on a UK plug is designed for problems where the electricity that you are using becomes unsafe, for example a wire inside a washing machine touches the case that the machine is contained in. The case it attached to rubber, non conducting wheels. You touch the case, with your leather soled shoes and you then get an electrical shock. If the case is attached to the earth wire the electricity finds an easy route to escape and this causes safety switches to open in the fuse box of the circuit. In the old days it would make a fuse melt and thus break the circuit.

The Earth socket is therefore a safety socket. Lots of appliances nowadays are so well insulated (protected) that an Earth protection is unnecessary. Some plugs have a plastic third pin. Two pin plugs have never had this additional protection.

Another experiment that you might like to try is changing the wet sand for other materials. Try leather, metals, china, dry sand, cloth ….. all sorts of materials. What an experiment! Brilliant.


(updated 18/5/2017)

“I know I can see myself in a mirror but why cannot I see myself in other things?” asks Isabella (8)

Many thanks team. I have some ideas about investigations that you could do at home. People say that light travels in straight lines. How can we test this idea. Firstly we need a source of light. How about a torch. 

Now we know that a torch sends out light in all directions but how do we know if it is travelling in a straight line? Think……..

Now lets ‘capture a little bit of the light from the torch. Let’s use a piece of card with a hole in it and see if we can make the light from the torch go through the hole.

Now what do we have to do to show that, the little beam of light coming through the hole is travelling in a straight line?
Supposing we had another piece of card with a hole in it in exactly the same spot do you think you could arrange it so that the little beam of light goes through the hole in the new piece of card?

Do the same for a third piece of card arranging it so the little beam goes through it’s hole. Now draw a line between the torch and the third hole. What do you notice?

Now lets quickly look at your question about not seeing reflections in materials that are not mirrors.

Reflections are wonderful things and they happen, or do not happen because light travels in straight lines. A reflection occurs when a beam of light bounces off a surface. You could set up your torch and card above to make a reflection, using a mirror or something flat and shiny.

Now do the same for a different type of surface.try it with a piece of material. What happens? Try with all sorts of flat surfaces – shiny metal (use flat aluminum foil and then crinkle it), cardboard, paper, plastic, water, leather……..
What do you notice? Maybe reflection requires a flat shiny surface? Think about the results.

Liam (10) asks “Why does electricity go around a circuit?”


Thanks for that team , a very informative introduction. It’s usually the furthest electron that is involved in moving the electrical energy around the circuit.

I have tried to create a small animation to show how this might happen. The ‘pipes’ are the copper metal wire. the dots are the outermost electron attached to the numerous copper atoms. The battery is the ‘motor’ that makes the electrons move. To find out a bit more about how the battery work have a quick look at Sadies question.

Electrons are negatively charged particles so the negative terminal of the battery is ‘pushing’ the electrons while the positive terminal of the battery  is ‘pulling’ the electrons SO when the switch is closed all the electrons in the circuit start moving together.

Who do you think discovered that opposite charges attract and negative charges repel?

Now what about the filament in the bulb. Any idea why that starts producing light? Any thoughts on both these questions, let me know in the ‘Leave a Reply ‘ box.



“How do you measure the distance to the Sun and stars?’ asked Julian (12)


Julian, quite a challenging question. I will only be trying to answer the first part – the Sun-Earth distance and the Earth-Stars distance.? Even then as my team suggests, I might be introducing mathematical terms that you have not met yet, but I have included links to other sources of help.

To answer the first question I recommend you read a Universe Today article   It is an excellent historical review of the problems that the early scientists had in determining the Earth-Sun distance. The answer finally came from observations of the movement of the planet Venus across the face of the Sun. In it the writer refers to a Nasa document that tries to explain the methods used. In present times the distance to the Sun is measured by ‘bouncing’ a radar pulse of of it.

Determining the distance to the other stars becomes possible once the Earth-Sun distance was known. It uses a technique called parallax.  I would like to illustrate this with a question which tackles a simpler problem. ‘How far is my finger away from my nose?’

Try this little experiment, put a finger in an upright position in front of your nose. Now close one eye and note the position of the finger. Close that eye and open the other one. The finger moves! Now suppose, with help, you could measure the amount of movement. You could end up with diagrams like those below. Did you make a note of the position of your finger relative to your nose? No – you can now see how you could work this out.

Now let’s do a little geometry and add an axis

We can then measure the angle of the apparent movement

You end with a right angled triangle ABC, knowing the angle x AND the distance between your eyes you should be able to do a bit of trigonometry using TAN x = opposite/adjacent (Tan x = AB/BC) and work out the distance of your finger from your face. For an introduction to trigonometry please look at this site.

Amazingly this is (in a crude way) the same process by which astronomers can measure the distance to the stars. Instead of using the distance between your eyes they use the orbit of the Earth. They look at a star and make a note of it’s position and then do the same thing 6 months later when the Earth is at the opposite side of the Sun. They therefore have AB (the distance between the Sun and the Earth and they have the angle through which the star has apparently moved. 

This gives the route to determining the distance between the Earth and a Star.


(revised 14/05/17)


Elizabeth (9) asked “How doesn’t stainless steel stain?”

Elizabeth I would like you try an experiment. Gather together some different nails. If you can, find a stainless steel nail, steel nail, iron nail and as many different nails that you can. Try and get two of each. Find two jam jars and put one set of clean nails in one jar and the other set of clean nails into the other jar. Why do I suggest cleaning the nails?

Fill the first jar with tap water and the second with water that has been boiled and cooled. Cover both with cling film and leave for about 7 days. What happens ?????

Relook at what you did at the start. What did  you see in the tap water that you added? How did this compare to the boiled water? What did you see when you boiled the water?

Most of the stains on metals are caused by interactions with water and oxygen.

When steel and iron are attacked on their surface by the oxygen from the water you get  things called oxides created as the oxygen (a very reactive gas) reacts with the metals surface. For most metals the compound (oxide) that is formed is fairly ‘soft’ and is washed away creating new sites for oxygen attack. With stainless steel it is the chromium in the stainless steel that reacts with the oxygen creating an invisible layer of Chromium Oxide and this is such a hard substance that no other substance can stain the steel.

If you rub the stainless steel implement hard with a scraper you might get rid of the strong oxide and create a stain by attacking the surface of the steel with another substance. Try it (with permission).

Elizabeth and others, quite a detailed answer. If you want to ask further questions please ask.

“If I was sucked into a black hole what would make me die?” asked James (12)

James, thank you for your question. I had a similar question from  Sheereen  click here to see my, and my friends answer.

It is thought that a ‘black hole’ is produced when a rather large star comes to the end of it’s life. It collapses in on itself and forms an object of incredibly concentrated matter. As ‘gravity’ is a property of the quantity of matter (see my answer to Ernie’s question) the collapse causes an immense increase in the gravity from the  smaller collapsed star.  

It is unlikely that our Sun would end in this way as it is classified as a smallish star. It is likely to become something called a ‘Red Dwarf’ star.

The ‘black hole’ is explained by the fact that this concentration of gravity ‘pulls’ light into it, thus the ‘hole’.

Now if you were close to the collapsed star in your spaceship you would also be pulled into it and unfortunately be added to the mass of the collapsed star. Sorry, you will be crushed.

(slightly revised 20/4/2016)

Donna (7) asks “Where do clouds come from?”

Donna, many thanks for the question. Before trying to answer it I thought I would ask my team a question.

Donna, what do you think about the puddles question? Think about how you would answer it and then go to my answer to a previous question.

Now to your question. Firstly I have created a little animation to show how the puddle disappear. You have to imagine that the shapes are water particles (molecules is the proper word). In the puddle they are all moving around. Most of them like being with the other particles BUT some are just moving around a little bit too fast and manage to escape from the puddle. When the Sun begins to warm the puddle it makes more water particles move around faster and more escape. This goes on until the puddle disappears.


The water particles are very small and are are lifted by the air up into the sky. High above the ground the air is quite cold so the water particles ‘slow down’. When they are moving ever so slowly if they meet another water particle they join up with each other and form droplets of water. This is how a cloud begins to form.

At home look at the steam from a kettle, BE VERY CAREFUL AND CONSULT AN ADULT.  At the exit of the kettle spout you can see nothing, BUT just above this the hot water particles begin to cool down and slow down and reform clouds of water.

(revised 21/4/17)

“Is a shadow a reflection?” asks Jack (7)

Thank you team. Some excellent observations. You noticed that the shadow had no detail on it, no colour, no lines, no images of seeds in the fruit. It was just black. On a dark night, under street lights look at your shadow. Other than your shape what detail does it have? It changes now and again, but why?

Now the reflection? If you look into a mirror what do you see? Is it like your shadow? How different is it?

Look at the two images of the fruit. The first image of the the fruit is the ‘real’ image. What about the image just below it (on the shiny surface)? Is it the real image? How did it get there?

Think about this – where did it come from? Now think about your image in a mirror, where did that come from?

You can create you own image of a reflection and a shadow. Get a mirror and a small screen. Put the object on the mirror and the screen behind it and use a torch to shine on the object.

Jack, this a great question. Lot’s to think about. Do you want to ask another question? Then click on the Reply button below.


“Why can heavy things float”? ask Aiden (10)


Aiden, great question,a difficult answer. I hope that you have investigated which things float and which things sink. You should be able to look around you and say ‘That floats’ and ‘That sinks”. Think about this – when something sinks it seems to be breaking the surface of the water. What is it breaking? I pass this back to my team.

The attractive forces between water molecules are called intermolecular forces. Look at this post to find out more.  When the much bigger metal boat hits the water, because of it’s design (spread out) there are lots more water particles that push on the boat and keep it floating.  Squash the boat up into a small lump of metal  and drop it into the water. What do you think will happen? Let me know what you think by leaving a comment in the ‘Leave a Reply’ box below.