Lexi (9) and Jaeda (9) and Cadence(8) asked a question on “Minerals”

Lexi, a nice question, a lot of elements are found within the form of a mineral. I shall let my team introduce the answer to this question.

Jaeda. You asked a question on crystals and why are they so expensive. This is not  a science question however most crystals are minerals so this question is also addressed to you.

Cadence . You asked about talc, which is a mineral.

All minerals are found in rocks. It is thought that some are created by the magma (lava) from volcanoes while other were formed in the Earth’s mantle and have reached the surface through earthquake activity. The minerals created from volcanoes have smaller crystals (probably cooled faster), minerals created more slowly in the mantle consist of bigger crystals. All of the minerals are created by a chemical reaction.

A lot of minerals are mined, dug from underground shafts. A lot of minerals have the elements Silicon and  Oxygen in them.Talc is a mineral of the elements Magnesium, Silicon and Oxygen and is mainly found in Japan and the United States.

Have fun and watch this video on minerals.

Thank you Lexi, Jaeda and Cadence. If you want to comment on this post please feel free to do so in the Reply box below. Or why not ask another question.

Could the Earth’s core be hotter than the Sun? asks Brooke (9)

Brooke. When earthquakes occur ( For how they occur see this question) you get a seismic wave travelling outwards from where it occurred. Imagine an explosion, a rock cracking a noise bigger than anything  you have experienced.  It would create the biggest sound ever, shake the ground more than it has ever been shaken and send a signal to the rest of the Earth that the earthquake had happened. It is this seismic wave of spreading energy that has helped scientists discover the structure of the inner Earth. The waves spreads out in all directions and some of them pass through the centre of the Earth. If you look at the waves on the other side of the Earth you can examine them and find out what they have travelled through.

It is now thought that the temperature of the inner core is close to 7000 degrees K (Kelvin). It is however not a liquid , because of the pressure of all the stuff on top of it. It is therefore a solid iron core at about 7000 degrees K…which is close to the outer temperature of the Sun.

(0 degrees K=273 degrees Centigrade so 100 degrees Centigrade = 373 degrees K )

William (9), Erika (10) and Alissa (10) asked some questions on fossil fuels

Erika asked “Why are fossil fuels so expensive?”

Alissa asked “How were fossil fuels found?”

William asked “how is oil made?”

I asked my friends to to talk about this however firstly I would like to talk about what makes a good science question.

science question is a question that may lead to observations, an idea and help us in answering (or figuring out) the reason for some observation and the question.

Erika’s question is a good economics question.

Miners (those who look for oil and coal) have a variety of clever tools to help them find the fossil fuel. For example they can use ‘sniffers’. The  sniffers can detect small amounts of oil vapour which might find their way out of the rocks that are hiding the oil. They also use seismic detection methods. Seismic waves were used to investigate the Earths core however the oil explorers do not use earthquakes to create the seismic wave – they use special guns or explosives. The shock waves (seismic waves) travel through the rock and at some point they are reflected back and return to the surface. The waves are recorded and examined and they tell the explorer what type of material (rock, water, oil, coal) they have traveled through.

So the question from William has led to further observations and thoughts which lead me to another question……If I left my garden rubbish for a year would it turn into coal? If not why?

Edited 20/10/17 – image changed, link added and seismic waves discussed

Some questions on Gold from Chantelle (7), Shelby(9) and Mary(9)

Chantelle asked “Why is gold so hard to find?”

Shelby asked “Why is gold so heavy and hard to pick up ?”

Mary asked “Why is gold so expensive?”

Chantelle, Shelby and Mary some great questions , thank you. But are they science questions? Lets look at what a science question is.

science question is a question that may lead to an idea and help us in answering (or figuring out) the reason for some observation.

For example ‘Why is gold so heavy?” …so firstly let us look at what gold is. Gold is a solid –  Is it a rock? Is it wood? Is it plastic? Is it a metal? ……it seems to fit into the group called metals (it’s cold to the touch, it’s solid, it can be scratched, it’s shiny, it’s heavy) it’s a metal. So Shelby’s second question is a good science question.

Is it heavier than other metals?  It doesn’t seem to be heavier than other metals but how do I test this?  Fair tests are important in science investigations. Being fair I compared my gold with with metals of comparable size? It is heavier, why? Maybe the bits which make up the gold are heavier than the bits that make up other metals?

Chantelle. I think gold is quite easy to find compared to other metals. Lots of other metals, iron, silver, copper and aluminium exist as minerals  so they are quite difficult to find. What is a mineral? Look at the following page.

Science Master

 

Kelly (9) asks “Why when we have been in water for too long, does our fingers and other parts of our body become soggy and wrinkly?”

Thanks team, a good start. The water soaks into the dead skin. There is lots of dead skin on our hands and feet. There are parts of our bodies which have very little dead skin so you will find that the wrinkles do not appear there. It was thought that the soaked up water caused the skin to swell and get puffy and the wrinkles were formed.

However

It is now thought by some that the wrinkling is a nervous reaction to the water attack on the body and that the wrinkled skin is a counter reaction to the skin becoming slippery because of the water intake (wrinkles help you hold things). What do you think?

Maybe you could record your thoughts in the Leave a reply box

 

Elizabeth (9) asked “How doesn’t stainless steel stain?”

Elizabeth I would like you try an experiment. Gather together some different nails. If you can, find a stainless steel nail, steel nail, iron nail and as many different nails that you can. Try and get two of each. Find two jam jars and put one set of clean nails in one jar and the other set of clean nails into the other jar. Why do I suggest cleaning the nails?

Fill the first jar with tap water and the second with water that has been boiled and cooled. Cover both with cling film and leave for about 7 days. What happens ?????

Relook at what you did at the start. What did  you see in the tap water that you added? How did this compare to the boiled water? What did you see when you boiled the water?

Most of the stains on metals are caused by interactions with water and oxygen.

When steel and iron are attacked on their surface by the oxygen from the water you get  things called oxides created as the oxygen (a very reactive gas) reacts with the metals surface. For most metals the compound (oxide) that is formed is fairly ‘soft’ and is washed away creating new sites for oxygen attack. With stainless steel it is the chromium in the stainless steel that reacts with the oxygen creating an invisible layer of Chromium Oxide and this is such a hard substance that no other substance can stain the steel.

If you rub the stainless steel implement hard with a scraper you might get rid of the strong oxide and create a stain by attacking the surface of the steel with another substance. Try it (with permission).

Elizabeth and others, quite a detailed answer. If you want to ask further questions please ask.

Elizabeth (9) asked “If you picked up a shell from the beach and put it close to your ear why does it have the sound of waves?”

 

Elizabeth, I think we need to do some experiments, firstly did you know that sound can be reflected? Sound can be reflected like light, and like light the surface it bounces off can affect the bounce. Try reflecting sound using a mirror (preferably plastic). You could use a loud ticking clock as a sound source. You then use your ears to detect the reflection. Now cover the mirror with some paper see how it affects the reflection. You might have some difficulty in making the experiment ‘fair’ but never mind (a sound detector would help make it fairer).

Now instead of a shell, place (carefully) a cup over your ear and listen. Replace the cup with a closed cardboard tube and listen. Do you hear anything? You might hear a low quiet whistling sound. Try making the tube shorter/longer and see how it affects the sound.

How was what you heard different from what you heard when you used the shell? What is the difference between the surface of the cup and cardboard tube and the shell surface?

My thoughts are that we are living in a ‘sound’ environment. Putting the cup over our ear cuts out most of the sound but not all of it. We call that an ambient sound. This sound manages to enter our cup and it is bounced around in the cup, but inside a shell the bouncing is slightly different.

Let me know what you think by filling in the Reply box below and post your comment or ask another Question . Anybody can do this.

Mattheiu (Yr 4) asked “If sound can’t travel through vacuums, why are they so loud?”

 

This is an excellent question. We are told that sound travels through the air to us by the vibrations of the air molecules between speaker and listener. But how does is get to us from a very distant speaker? Or through a vacuum? The magic formula is that one form of energy can be converted to another form of energy, as my team have explained.

If we can convert one form of energy to another then why not convert sound, which is moving air and therefore kinetic energy (the energy of movement) to electrical energy that can be passed down a wire or through a vacuum as an electromagnetic wave to a listener a long way away. When it is received the reverse conversion process can take place where the electrical energy can be converted back to kinetic energy, via electromagnetics and loudspeakers and not forget ears and brain.  Then by controlling the input to the conversion process we can control the loudness. Magic but real.

See my Science Master Special on Energy

Any reader can ask another question or leave a Comment in the Leave a Reply box below

Elizabeth (9) asks “How does sand form in a desert?”

I agree we need to do an investigation.  The suggestion is that the desert sand might have come from the soil. Let’s see if we can find sand in the soil around us. Before we do this lets think about soil, the soil in your garden. What do you think it is made of? Maybe it is just made of soil? Maybe it is made of a mixture of things? Let’s investigate these questions.

Collect some soil. Get a plastic transparent beaker or a jar with a lid. Put a couple of small spoonfuls of your soil into the container. Add enough water so that it is half full. Cover and shake for about 20 seconds. Put it down and wait for about fifteen minutes. Now look at it and make notes on what you see. Repeat with another sample and another beaker or container (investigations always need to be checked).

Has your experiment resulted in layers of stuff in the beaker? Maybe a bit like the layers in the image below.

If it has then think about why you have layers? What has formed the first layer and why? Was it because it was the lightest or heaviest ‘stuff ‘ in the jar (soil)? Is the second layer made up of ‘stuff’ that is lighter or heavier?

The bottom layer is ‘sand’ …..the heaviest ‘stuff’ that makes up soil. The other layers are ‘silt’ and ‘clay’. Look at the diagram that my friends have given you the sand particles are the biggest.

Now to deserts. In very arid (dry) conditions the soil dries out. The wind basically blows away the smallest particles of clay and silt leaving the largest so a desert of sand is formed.

Elizabeth … thank you for your question.

“Will we ever discover aliens?” asks Frank (9)

Frank, as my team suggested, in 2009 NASA’s Kepler telescope began pointing at a small patch of sky for four years. In that time it found a series of stars with Earth like planets surrounding them. If you multiply this little bit of the sky to cover the whole Universe you are talking about over 50 billion Earth like planets. A good assumption would be that some form of life found it’s way to existence on some of them. Maybe they have yet to develop, like us, a way of communicating over the great distances involved.

If you are a teacher read the following Guardian article Updated 26/02/2017